



RollNo. \_\_\_\_\_

|  |  |  |  |  |  |  |  |  |  |  |  |
|--|--|--|--|--|--|--|--|--|--|--|--|
|  |  |  |  |  |  |  |  |  |  |  |  |
|--|--|--|--|--|--|--|--|--|--|--|--|

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. /B.Tech / B. Arch (Full Time) - END SEMESTER EXAMINATIONS, APR / MAY 2024

(Common to all branches)

VI Semester

ECM503 &amp; FUNDAMENTALS OF ELECTROMAGNETICS

(Regulation 2019)

Time: 3hrs

Max. Marks: 100

|     |                                                                                      |
|-----|--------------------------------------------------------------------------------------|
| CO1 | Understand static EM field concepts                                                  |
| CO2 | Understand time varying EM fields and solve engineering problems using Maxwell's law |
| CO3 | Understand and analyze plane wave propagation                                        |
| CO4 | Understand the basics of transmission lines.                                         |
| CO5 | Understand the basics of antenna theory.                                             |

**BL – Bloom's Taxonomy Levels**

(L1-Remembering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

**PART - A(10x2=20Marks)**

(Answer all Questions)

| Q.No. | Questions                                              | Marks | CO | BL |
|-------|--------------------------------------------------------|-------|----|----|
| 1     | Define Electric flux density                           | 2     | 1  | 1  |
| 2     | State Coulombs Law                                     | 2     | 1  | 1  |
| 3     | Write Maxwell's Equation in differential form          | 2     | 2  | 4  |
| 4     | State Faraday's Law                                    | 2     | 2  | 1  |
| 5     | What is Skin Effect                                    | 2     | 3  | 2  |
| 6     | Define Poynting Vector and State its significance      | 2     | 3  | 2  |
| 7     | Define Characteristic impedance of a transmission line | 2     | 4  | 1  |
| 8     | What is meant by standing wave ratio                   | 2     | 4  | 2  |
| 9     | What is the radiation pattern of an antenna            | 2     | 5  | 2  |
| 10    | Mention two applications of reflector antennas         | 2     | 5  | 3  |

**PART - B(5x 13=65Marks)**

(Restrict to a maximum of 2 subdivisions)

| Q.No.       | Questions                                                                                                                                                        | Marks | CO | BL |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|----|
| 11 (a)      | Write Maxwell's equations in both integral and differential forms. Explain the mathematical structure and physical interpretation of each term in the equations. | 13    | 1  | 4  |
| <b>OR</b>   |                                                                                                                                                                  |       |    |    |
| 11 (b) (i)  | With a neat diagram explain the effect of Electric field in a conductor                                                                                          | 8     | 1  | 4  |
| 11 (b) (ii) | Derive the expression for the magnetic field due to a long straight current-carrying conductor using Ampere's Circuital Law                                      | 5     | 1  | 4  |
| 12 (a)      | Explain the concepts of transformer EMF and motional EMF. Derive the expressions for both and discuss the physical significance and applications of each.        | 13    | 2  | 4  |
| <b>OR</b>   |                                                                                                                                                                  |       |    |    |

|            |                                                                                                                                                       |    |   |   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|
| 12 (b)(i)  | Using Lorentz force Equation, explain how force is exerted on a Unit Charged particle and on a Current element                                        | 8  | 2 | 4 |
| 12 (b)(ii) | Derive Biot Savart law with necessary diagram                                                                                                         | 5  | 2 | 4 |
| 13 (a)     | Discuss the reflection and transmission of a uniform plane wave at the boundary between two dielectric media for normal incidence                     | 13 | 3 | 2 |
| <b>OR</b>  |                                                                                                                                                       |    |   |   |
| 13 (b)     | Describe the concept of polarization of electromagnetic waves. Explain different types of polarization with diagram                                   | 13 | 3 | 2 |
| 14 (a)(i)  | Explain the working of a slotted line for impedance measurement at microwave frequencies                                                              | 7  | 4 | 3 |
| 14 (a)(ii) | Explain how transmission lines can be used as reactive circuit elements at high frequencies                                                           | 6  | 4 | 3 |
| <b>OR</b>  |                                                                                                                                                       |    |   |   |
| 14 (b)     | With a neat diagram, describe the structure and working of microstrip transmission lines. Also derive the expression for its characteristic impedance | 13 | 4 | 3 |
| 15 (a)(i)  | Describe the structure, working principle, and advantages of a Yagi-Uda array. Explain how it achieves directivity                                    | 6  | 5 | 1 |
| 15 (a)(ii) | Describe the construction, operation, radiation characteristics and parameters of a quarter-wave monopole antenna                                     | 7  | 5 | 1 |
| <b>OR</b>  |                                                                                                                                                       |    |   |   |
| 15 (b)     | Explain the design and working of a microstrip patch antenna. List its advantages, limitations, and applications                                      | 13 | 5 | 1 |

**PART- C(1x 15=15Marks)**  
(Q.No.16 is compulsory)

| Q.No. | Questions                                                                                                                                                                 | Marks | CO | BL |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|----|
| 16.   | Explain the boundary conditions for electric field and electric flux density at the interface between any two media. Derive the expressions and illustrate with a diagram | 15    | 1  | 5  |

